Solid-state fermentation for the production of alkaline protease by Bacillus cereus 1173900 using proteinaceous tannery solid waste

نویسندگان

  • B. Ravindran
  • A. Ganesh Kumar
  • P. S. Aruna Bhavani
  • Ganesan Sekaran
چکیده

Animal fleshing, the major proteinaceous solid waste generated from leather industry, was used as substrate for the production of alkaline protease by Bacillus cereus 1173900 in solid-state fermentation (SSF). Maximum protease activity of 12,310 U/g was observed at 60 h in SSF crude extract. The extracted protease enzyme was purified by 53.64-fold through ammonium sulphate precipitation and chromatography separation in Sephadex G-100. The purified protease had a specific activity of 201.6 (U/mg). The molecular weight of the purified enzyme was 66 kDa, determined by SDS–PAGE. The zymogram also revealed a clear hydrolytic zone due to proteolytic activity, which coincided with the band obtained with SDS–PAGE. Enzyme activity was inhibited by EDTA, suggesting that the enzyme belongs to metalloprotease(s).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Response of surface optimization for the enhanced production of alkaline protease isolated from Bacillus sp. with bean husk as a new substrate

Optimization of the fermentation medium for maximum alkaline protease production was carried out. Fifteen positive isolates were examined for their extent of alkaline protease production. The most potent producer was identified as Bacillus sp. The solid substrate screening showed that the combination of wheat straw and bean husk was the best one. The initial screening by using Plackett–Burman’s...

متن کامل

Batch Kinetics and Modeling of Alkaline Protease Production by Isolated Bacillus sp. (RESEARCH NOTE)

The aim of this study was the use of fish waste hydrolysate (FWH) as a substrate for alkaline protease production using isolated Bacillus sp. in a batch system. Then the fermentation kinetics of enzyme production was studied. The results show that with the addition of FWH to the fermentation medium with a final concentration of 4% (optimal concentration), alkaline protease value reached a maxim...

متن کامل

Evaluation of Ca-Independent a-Amylase Production by Bacillus sp. KR-8104 in Submerged and Solid State Fermentation Systems

This study investigates the production of crude Ca-independent and low pH active α-amylase by Bacillussp. KR-8104 in submerged fermentation (SmF) and solid-state fermentation (SSF) systems. Differentparameters were evaluated in each system using “one factor at a time” approach to improve the production ofenzyme. The results showed that in the SmF the maximum enzyme production ...

متن کامل

Solid State Fermentation for Production of Chitosan by Aspergillus Niger

The effect of Solid State Fermentation (SSF) on Chitosan production by A. niger was investigated. A. niger BBRC 20004 from Biochemical and Bioenvironmental Research Centre of Sharif University of Technology (Tehran, Iran), was grown on corn residue. Chitosan was extracted from the fungal mycelia using hot alkaline and acid treatment. A. niger was incubated for 12 days on corn residue with moist...

متن کامل

Bio-prospecting of cuttle fish waste and cow dung for the production of fibrinolytic enzyme from Bacillus cereus IND5 in solid state fermentation

The process parameters governing the production of fibrinolytic enzyme in solid state fermentation employing Bacillus cereus IND5 and using cuttle fish waste and cow dung substrate were optimized. The pH value of the medium, moisture content, sucrose, casein and magnesium sulfate were considered for two-level full factorial design and pH, casein and magnesium sulfate were identified as the impo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011